Multiscale Computational Modelling in Biomechanics of Cardiovascular Diseases and Therapies

Thomas Franz^{1,2,3}

¹Chris Barnard Division of Cardiothoracic Surgery, ²Research Office, ³Centre for Research in Computational and Applied Mechanics, University of Cape Town

South Africa

www.biomechanics.uct.ac.za

Group & Acknowledgements

Students

Hugo Krynauw Mazin Sirry Fulufhelo Masithulela Peter Wise **Rodaina** Omar Renee Miller Jules Lancee Loes Verrijt Karen Kadner Jannik Buescher Brendan McNabb Liz Nelson Jesse Macadangdang Lucie Bruchmueller

Post-docs

Laura Dubuis Daniel Auger Jeroen Kortsmit

Collaborators

Dr Neil Davies Dr Deon Bezuidenhout Prof Daya Reddy Dr Greg Mitchell Prof Ernesta Meintjes Dr Bruce Spottiswoode Prof Amit Gefen Dr Georges Limbert Prof Jun Liao

Funding Sources

- National Research Foundation (SA)
- Department of Science and Technology (SA)
- Centre for High Performance Computing (SA)
- Royal Society (UK)
- Royal Academy of Engineering (UK)
- Claude Leon Foundation (SA)
- Whitaker Foundation (USA)
- National Science Foundation (USA)
- University of Cape Town
- Medtronic Inc

National Science Foundation

Projected global deaths for selected causes of death, 2002–2030

Myocardial Infarction = Heart Attack

Post-infarct Remodelling of the Heart

Healthy

Infarcted

Therapies for MI

- Aim: Prevention of adverse remodelling of the heart
- Cell delivery therapy
 - Injection of cells with carrier medium into infarcted region of the heart
 - Positive outcomes
 - Mechanisms unclear

Biodegradable Gel: Scar and Function

4 weeks after infarction

Fractional Shortening

n=7-9

Questions on Injection Therapy

- Contribution to mechanical and biological properties of the heart
- Properties of injectable biomaterials
- Timing of delivery
- Injection site
- Injection volume

Computational Mechanics of MI

Canine Biventricular Cardiac Model

- Myofibre representation
- Constitutive models
 - Passive strain energy function
 - Active contraction model
- Coupling to Windkessel circulation model
- Antero-apical infarct: 22% LV wall
- Infarct wall thinning
- Post-infarct LV dilation 100%

(Kortsmit, Davies, Miller, Franz)

Hydrogel Injectates

Gel inclusion in infarct region

- Volume: 9.4 ml (7.1% of LV wall)
- Transmural distribution
 - 8 thin layers
 - Single bulk layer •

Kadner et al, Biomaterials, 2012

Study Design and Ventricular Function

Case		С	Functional Parameters		
			V ₀ (ml)	SV (ml)	EF (%)
Healthy Control	Н	0.88	13.9	15.2	35.6
Ischemic Infarct	II	0.88	17.8	6.61	15.5
+ layered gel	11 + L	0.88	16.7	7.02	17.7
+ bulk gel	II + B	0.88	19.9	4.78	12.4
Scarred Dilated Infarct	SDI	8.80	39.4	9.28	11.8
+ layered gel	SDI + L	8.80	27.9	13.0	19.0
+ bulk gel	SDI + B	8.80	27.2	13.2	19.2

Stress and Strain in Infarct Region

MICRO-STRUCTURAL MODELLING OF BIOMATERIAL INJECTATE

Injectate Reconstruction

L20

- 20 sections (layers)
- Spacing = 245 μm
- Total thickness = 4.9 mm

Injectate Reconstruction

2D masks for gel segmentation

3D geometry from reconstruction of **2D** masks

(Simpleware)

Cardiac Reconstruction

Short-axis cardiac MRI of healthy rat

4 3T MRI system with custom small-animal bird cage coil

Cardiac and Injectate Geometry

Cardiac Geometry with Injectate

µCT Injectate Imaging

CELL MECHANICS AND MECHANOBIOLOGY

Cell Therapies for Infarcted Hearts

Cell-specific Geometrical Modelling

Confocal microscopy images

Slicing through sample

Cell-specific Finite Element Model

Step 1: Contact initiation

- Cell: vertical displacement till contact
- Membrane: fixed at its boundaries

Step 2: Tie constraint

- Cell: glued to the membrane at the FAs
- Membrane: fixed at its boundaries

Elastic membrane

Step 3: Stretching

- Cell: glued to the membrane at the FAs
- Membrane: stretched along the x axis

Cell-specific Finite Element Model

Qualitative results of the focal adhesions

Stress in Substrate

Cell-specific Finite Element Model

Tensile strain (maximal principal strain)

